VHE Gamma Ray Astronomy: A tool to study Very High Energy Universe

Outline:

- VHE Gamma Ray Astrophysics
- Atmospheric Cerenkov Techniques
- Connecting TeV gamma rays with Cosmology
- Indirect Dark Matter detection
- Tests of Violation of Lorentz Invariance
- Conclusions and Future directions

27th IARGRG, H.N.B. (Garhwal) University, March, 2013
Origin of cosmic rays?

nucleus + X -> π + X'

π^0 -> γγ
π^+ -> μ + ν
μ -> e + νν

apparent source direction
charged particle

γ, ν
Shock acceleration mechanism
(by Enrico Fermi)

Particles (electrons and hadrons) get scattered many times in shock front and gain energy in each cycle (TeV energies \rightarrow several 100 years)

Max. Energy about 10^{15} eV
Efficiency \sim 10%, needed for CR from SNR

$\frac{E_f}{E_i} = 1 + \frac{4}{3} \beta$
γ-ray astronomy and cosmic rays (CR)

- Origin of CRs?
- (charged) CRs deflected by B-fields

=> search for γ-rays produced by CRs close to source

- discriminate hadronic vs leptonic acceleration

=> shape of spectrum

![Diagram of γ-ray astronomy and cosmic rays](image)

- Hadronic acceleration:
 - $p^+ (\gg \text{TeV})$
 - $\gamma \gamma (\text{TeV})$
- Leptonic acceleration:
 - $e^- (\text{TeV})$
 - Synchrotron $\gamma (\text{eV-keV})$
 - Inverse Compton $\gamma (\text{TeV})$
 - $\gamma (\text{eV})$
Very High Energy γ-ray Astronomy

- Youngest astronomic discipline
- First significant measurement of TeV γ-ray emission from Crab Nebula by Whipple telescope in 1989
- > 50 hrs for 9 sigma detection

Current generation since 2004
- 1% of Crab nebula flux
- You can now see TeV gamma rays from Crab nebula in < 2 mins

MAGIC-I MAGIC-II
Imaging Air Cherenkov Telescopes

- Particle shower
- ~ 10 km
- Cherenkov light
- ~ 120 m

Cherenkov light Image of particle shower in telescope camera

reconstruct:
arrival direction, energy
have to reject hadron background
Background Rejection

Main Background:
- Cosmic Ray (hadron) showers
 - >10^4 times more numerous than γ-ray showers
- Reject based on shower shape
Standard “Hillas” Analysis

Background rejection with multidimensional cuts on Hillas parameters: Length, Width, Dist, Alpha, Size

Hadron background:
- isotrop arrival direction
- flat Alpha distribution

Gammas:
- excess in source direction
Current generation of IACTs

- MAGIC
- VERITAS
- HESS
- CANGAROO III
- TACTIC
VHE γ-ray targets

- μ-quasar
- Pulsar
- Galactic center
- HESS galactic plane scan
- Shell-type SNR
- Origin of cosmic rays
- Cosmological γ-ray horizon
- Quantum gravity effects
- Cold dark matter

> 100 sources above 100 GeV, rapid growth in recent years
Photon Background in the universe

Relic of structure formation in the Universe
UV to far IR wavelengths (1 to 1000 microns): EBL
Extragalactic Background Light

accumulated radiation in history of universe

Test of star formation and galaxy evolution

Direct and indirect measurements
Uncertainties due to strong foreground emission (zodiacal light)
Can TeV photons shed some light on it?
Attenuation of VHE Gamma Rays

\[\sigma_{\gamma\gamma}(E_\gamma, \epsilon, \mu) = \frac{3\sigma_T}{16}(1 - \beta^2) \times \left[2\beta(\beta^2 - 2) + (3 - \beta^4) \ln\left(\frac{1+\beta}{1-\beta}\right) \right] \]

\[\beta \equiv \sqrt{1 - \frac{\epsilon_{\text{th}}}{\epsilon}} \]

\[\epsilon_{\text{th}}(E_\gamma, \mu) = \frac{2(m_e c^2)^2}{E_\gamma (1 - \mu)} \]

\[\frac{dl}{dz} = c \frac{dt}{dz} = \frac{R_H}{(1 + z)E(z)} \]

\[E(z) \equiv \left\{ (1 + z)^2 (\Omega_m z + 1) + z (2 + z) [(1 + z)^2 \Omega_r - \Omega_\Lambda] \right\}^{1/2} \]

The optical depth traversed by a photon observed at energy \(E_\gamma \) that was emitted by a source at redshift \(z \) is given by

\[\tau_{\gamma}(E_\gamma, z) = \int_0^z \left(\frac{dl}{dz'} \right) dz' \int_{-1}^{+1} d\mu \frac{1 - \mu}{2} \int_{\epsilon_{\text{th}}}^{\infty} d\epsilon' n_\epsilon(\epsilon', z') \sigma_{\gamma\gamma}(E', \epsilon', \mu), \]
Effects of EBL Absorption

Optical depth depends on z and energy of the photons emitted.
$\tau = 1$ is the Gamma Ray Horizon

Assuming no cut off in intrinsic spectrum

$$\frac{dN_{\text{obs}}}{dE} = \frac{dN_{\text{int}}}{dE} \times e^{-\tau_{\gamma}(E,z)}$$
Effects of EBL Absorption

- Absorption leads to cutoff in AGN spectrum
- Measurement of spectral features allows to constrain EBL Models
- A low threshold detector is required to see distant source
Extragalactic Background Light Models

• **Backward Evolution**: takes existing galaxy population, scales it backwards as power-law \((1+z)\)

• **Backward Evolution from Observations**: Attempts to correct for changing luminosity functions and SEDs with redshift and galaxy types

• **Evolution directly observed and Extrapolated based on MWL observations**

• **Forward Evolution**: stars with cosmological initial conditions, takes into account formation of galaxies including stars and AGNs, stellar evolution, scattering, absorption, re-emission by dust
Observations of High red shift objects

3C 279 (z = 0.536)
- discovered by MAGIC in 2006
- EBL constraints [Science 2008]
- re-observed 2007 and 2009

PKS 1222+21 (z = 0.432)
- MAGIC discovery during flare 2010
- fast variability

![Graph 3C 279, z = 0.536](image1)

![Graph PKS 1222+21, z = 0.432](image2)

[A&A 2011]
Constraints from mid to high redshift objects (\(z \sim 0.1 \) to 0.5).

Fit to measured spectrum:
\[
dN/dE = N_0 \left(\frac{E}{200 \text{ GeV}} \right)^{-\alpha}
\]

\(N_0 = (5.2 \pm 1.7) \times 10^{-10} \text{ [TeV}^{-1} \text{ cm}^2 \text{ s}^{-1}] \)

\(\alpha = 4.11 \pm 0.68 \)

MAGIC, Science (2008)
The extragalactic GeV sky

- 1017 TS>25, |b|>10° sources
- 886 AGNs in 'clean' sample
- Census:
 - 310 FSRQs
 - 395 BLLacs
 - 179 of unknown&other type

- subclasses assigned from v_{sync}
 - LSP: $\log(v_{\text{sync}}) < 14$
 - ISP: $14 < \log(v_{\text{sync}}) < 15$
 - HSP: $\log(v_{\text{sync}}) > 15$ with v_{sync} in Hz

[2LAC: Ackermann et al. 2011 (The Fermi-LAT collaboration)]

LAT constrains opt./UV-EBL, $z>0.2$
Constraints from GeV-TeV data

Criterion that EBL shape is *allowed*:

\[\Gamma_{VHE}^{\text{int}} - \sigma_{VHE}^{\text{stat}} - \sigma_{VHE}^{\text{sys}} > \Gamma_{HE} + \sigma_{HE}^{\text{stat}} \]

- Now: use spectral index measured by Fermi
- Test if fitted spectrum has a spectral index softer than the index measured by Fermi / LAT \(\Rightarrow \) If so, EBL shape is allowed
- If spectrum shows break, compare *only the first index* to Fermi measurement
- Test if spectrum shows an exponential pile up \(\Rightarrow \) If so, EBL shape is excluded
Constraints from GeV data

First Year of Fermi data:
reject with high significance
[HEP: >8.9σ, LRT: >11.4σ]

EBL models that predict large opacities in the 20-50 GeV energy range for distant sources (z~1…4).

EBL absorption negligible at <15 GeV for z≤2
Constraints from GeV data

<table>
<thead>
<tr>
<th>Source</th>
<th>z</th>
<th>E_{max}</th>
<th>$\tau_{UL}(z, E_{\text{max}})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1147-3812</td>
<td>1.05</td>
<td>73.7</td>
<td>1.33</td>
</tr>
<tr>
<td>J1504+1029</td>
<td>1.84</td>
<td>48.9</td>
<td>1.82</td>
</tr>
<tr>
<td>J0808-0751</td>
<td>1.84</td>
<td>46.8</td>
<td>2.03</td>
</tr>
<tr>
<td>J1016+0513</td>
<td>1.71</td>
<td>43.3</td>
<td>0.83</td>
</tr>
<tr>
<td>J0229-3643</td>
<td>2.11</td>
<td>31.9</td>
<td>0.97</td>
</tr>
<tr>
<td>J1012+2439</td>
<td>1.81</td>
<td>27.6</td>
<td>2.41</td>
</tr>
</tbody>
</table>

Robust upper limits

Proceeding beyond ULs

• 46-months of 1-500 GeV data

• blazars of BL Lac type
• 'non-variable' in 2LAC
• the "best" (>3σ in 3-10 GeV band) 150 BL Lacs from 2LAC
 • sub-divided into 3 redshift bins (50 sources each):
 - $z = 0$ 0.2,
 - 35 HSPs, 10 ISPs, 5 LSPs
 - 0.20.5,
 - 27 HSPs, 18 ISPs, 5 LSPs
 - 0.5 1.6
 - 10 HSPs, 19 ISP, 21 LSPs
Test of EBL Models

Goal: collective deviation of observed spectrum from its intrinsic one

Assumption: intrinsic spectrum represented by LogParabola within LAT E-range

Procedure: in each redshift bin...
- fit spectra of all sources independently
- LogParabola-fit in [1GeV, E_{crit}] -> intrinsic spectrum & extrapolation to high energies
- Spectra of all sources modified by common term exp[-b \cdot \tau(E,z)]

F(E)_{obs} = F(E)_{intr} \exp[-b \cdot \tau(E,z)_{model}]

Test:
1. No EBL:
 Null Hypothesis b=0
2. Model prediction correct:
 Null hypothesis b=1

TS=2 \left[\log L(b) - \log L(b=0/1) \right]
Test of EBL Models

Many EBL models tested:

<table>
<thead>
<tr>
<th>Model</th>
<th>Significance of $b=0$ Rejection</th>
<th>b^c</th>
<th>Significance of $b=1$ Rejection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stecker et al. (2006) – fast evolution</td>
<td>4.6</td>
<td>0.10±0.02</td>
<td>17.1</td>
</tr>
<tr>
<td>Stecker et al. (2006) – baseline</td>
<td>4.6</td>
<td>0.12±0.03</td>
<td>15.1</td>
</tr>
<tr>
<td>Kneiske et al. (2004) – high UV</td>
<td>5.1</td>
<td>0.37±0.08</td>
<td>5.9</td>
</tr>
<tr>
<td>Kneiske et al. (2004) – best fit</td>
<td>5.8</td>
<td>0.53±0.12</td>
<td>3.2</td>
</tr>
<tr>
<td>Gilmore et al. (2012) – fiducial</td>
<td>5.6</td>
<td>0.67±0.14</td>
<td>1.9</td>
</tr>
<tr>
<td>Primack et al. (2003)</td>
<td>5.3</td>
<td>0.77±0.15</td>
<td>1.2</td>
</tr>
<tr>
<td>Dominguez et al. (2011)</td>
<td>5.9</td>
<td>1.02±0.23</td>
<td>1.1</td>
</tr>
<tr>
<td>Finke et al. (2010) – model C</td>
<td>5.8</td>
<td>0.86±0.23</td>
<td>1.0</td>
</tr>
<tr>
<td>Franceschini et al. (2008)</td>
<td>5.9</td>
<td>1.02±0.23</td>
<td>0.9</td>
</tr>
<tr>
<td>Gilmore et al. (2012) – fixed</td>
<td>5.8</td>
<td>1.02±0.22</td>
<td>0.7</td>
</tr>
<tr>
<td>Kneiske & Dole (2010)</td>
<td>5.7</td>
<td>0.90±0.19</td>
<td>0.6</td>
</tr>
<tr>
<td>Gilmore et al. (2009) – fiducial</td>
<td>5.8</td>
<td>0.99±0.22</td>
<td>0.6</td>
</tr>
</tbody>
</table>

rejection >3σ

EBL flux level 3-4 times lower than previous estimates in the opt/UV

[Abdo et al. 2010].
Combined GeV-TeV Constraints

limits include cascade emission and total energy budget

542, A59

• Positive: Different methods lead to similar constraints
• Negative: Sometimes too strong assumptions (e.g. power law spectra)
Alternative Approaches to constrain EBL

The method (1)

Simultaneous multi-ν obs's:

- optical + X-rays + HE γ-ray + VHE γ-ray

Model SED: use SED w/out (EBL-affected) VHE γ-ray data:

$\rightarrow \chi^2$-minimization \rightarrow SSC model

(check structure of multi-D parameter space)

Mankuzhiyil, MP, Tavecchio 2010
ApJL, 715, L16
Applications to a few sources

\[\log \nu F(\nu) \text{ [erg cm}^{-2} \text{ s}^{-1}] \]

PKS 2155–304

\[\log \nu \text{ [Hz]} \]

\[\tau \text{ lower than predicted? } \]
\[z \text{ uncertain? } \]
\[\text{ALPs?} \]
Extrapolate model SED into VHE regime
\[
\rightarrow \text{“intrinsic” blazar VHE emission}
\]

Observed vs “intrinsic” emission
\[
\rightarrow \tau_{\gamma\gamma}(E, z)
\]

Assume (concordance) cosmology
\[
\rightarrow n_{\text{EBL}}(\epsilon, z_j) \quad \text{(parametric: } \sum a_n \epsilon^n)\]

Cons:
- indirect measurement of EBL
- method depends on blazar model
- theoretical uncertainties (e.g., electron spectrum)

Pros:
- unbiased method
- no assumptions on EBL, blazar SED
- SSC well tested locally on different emission states
Motivation to search for Dark Matter

Current cosmological models suggest DM content $\sim 25\%$

(ΛCDM model, $\Omega_{CDM}h^2 \approx 0.1$)

Mainly observed through gravitational lensing

Indirect detection possible if candidates are WIMPs (appear in extensions of standard model Particle Physics: SUSY)

WIMPs can self-annihilate giving standard model particles:

- Gamma ray lines from direct annihilation of photons
- Gamma ray continuum from hadronization of annihilation products.
Galaxy Clusters: Lot of DM content, distant, possible astrophysical background

Galactic Center: Complex region, huge astrophysical background, nearby

Dwarf Galaxies: DM dominated, less astrophysical background, low flux

Unidentified HE sources from Fermi

Plan: Deep observations on a variety of source classes
Observations on dSph, focus on Segue

Segue1 : 23 +/- 2 Kpc, discovered in 2006 in SDSS

Most DM dominated dSph known to date

Deep Exposure on Segue

No signal, flux UL limits calculated

<table>
<thead>
<tr>
<th>Quantity/dSph</th>
<th>Draco</th>
<th>Ursa Minor</th>
<th>Boötes 1</th>
<th>Willman 1</th>
<th>Segue 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excess (counts)</td>
<td>-28.4</td>
<td>-30.4</td>
<td>28.5</td>
<td>-1.45</td>
<td>31.2</td>
</tr>
<tr>
<td>Significance(^a)</td>
<td>-1.51</td>
<td>-1.77</td>
<td>1.35</td>
<td>-0.08</td>
<td>1.4</td>
</tr>
<tr>
<td>95% CL UL(^b)</td>
<td>18.8</td>
<td>15.6</td>
<td>72.0</td>
<td>36.7</td>
<td>102.5</td>
</tr>
<tr>
<td>(E_{TH}) (GeV)</td>
<td>340</td>
<td>380</td>
<td>300</td>
<td>320</td>
<td>300</td>
</tr>
<tr>
<td>Flux UL 95% CL(^c) (cm(^{-2}) s(^{-1}))</td>
<td>(0.49 \times 10^{-12})</td>
<td>(0.40 \times 10^{-12})</td>
<td>(2.19 \times 10^{-12})</td>
<td>(1.17 \times 10^{-12})</td>
<td>(8 \times 10^{-13})</td>
</tr>
</tbody>
</table>
Upper limits on Annihilation Crosssection

Differential gamma-ray flux from DM annihilation coming from a spherical DM halo:

\[
\frac{d\phi}{dE}(\Delta \Omega, E) = \frac{<\sigma v>}{8\pi m_{DM}^2} \left(\frac{dN_\gamma}{dE}\right)_{DM} < J(\Delta \Omega) >
\]

Upper limits on the number of detected gamma-ray \(N_\gamma\) constrain the WIMP parameter space:

\[
<\sigma v>^{95\% CL} = \frac{8\pi}{< J(\Delta \Omega) >} \times \frac{N_\gamma^{95\% CL} m_{DM}^2}{T_{OBS} \int_0^{E_{DM}} A_{eff}(E) \frac{d^3\Phi_\gamma}{dEdAdt} dE}
\]

\[
\langle J \rangle = \int_{\Delta \Omega} d\Omega \int dl \rho^2(r(l))
\]

For Segue, Einasto profile has been chosen

Exclusion curves give us an idea on the several range of uncertainties from DM models on crosssections

Tests for Lorentz Invariance Violation

In standard relativistic QFT, space-time considered as a fixed arena in which physical processes take place

- Planck length \(l_P \equiv \sqrt{\frac{\hbar G_N}{c^3}} \approx 1.6 \times 10^{-33} \text{cm} \)
- corresponds to \(M_P \equiv \sqrt{\frac{\hbar c}{G_N}} \approx 1.2 \times 10^{19} \text{GeV} \)

Gravity as non-renormalizable interaction may leave distinctive imprint at energies \(\ll \) Planck mass if violating any fundamental symmetry

Foamy structure of quantum space-time:
- Space-time at large distances is “smooth” but, at very short distances it might show a very complex structure due to quantum fluctuations:
 - foam-like structure
Manifestations

- Energy dependent dispersion of radiation can be manifested in arrival time of photons

Look for signatures for deviations from QFT, presumably suppressed by some power of Planck mass

From a purely phenomenological point of view, the effect can be treated by a perturbative expansion: Assume $E \ll M_{\text{Planck}}$.

$$c^2 p^2 = E^2 \left(1 + \xi \left(\frac{E}{M_P} \right) + \mathcal{O} \left(\frac{E^2}{M_P^2} \right) + \ldots \right)$$

- explicit breaking of LL at Planck mass scale

Implies energy-dependent speed of light:

$$v = \frac{\partial E}{\partial p} \approx c \left(1 - \xi \left(\frac{E}{M_P} \right) \right)$$

Vacuum acquires non-trivial optical properties: refractive index $v(E) = c/n(E)$

$$\Delta T = \xi \frac{\Delta E}{M_{\text{QG}}} \times \frac{L}{c} = \xi \frac{\Delta E}{E_{\text{QG}}} \times H_0^{-1} \int dz/h(z)$$

Aldo Morselli
Scineghe 08
Phenomenological Approach

Need very fast transient phenomena providing a “time stamp” for the simultaneous emission of different energy γ-rays.

Figure of merit for QG tests: \[M_{QG} = \xi \frac{LE}{c \Delta t} \]

- \(E \): the lever arm
 - for the instrument (Instrumental limit)
 - for the observed energies (Observing a source)
- \(t \): the time resolution
 - time resolution of the instrument (Instrumental limit)
 - the binning time to have enough statistics (Observing a source)
- \(L \): the typical distance of the sources

Taken from R. Wagner, Scineghe 2008
A large flare from Mrk 501

LCs for different energy ranges (4 min bins)
- Flare is seen in all energy ranges

Time delay? between highest and lowest energy ranges
- First time in VHE regime

Photons emitted simultaneously at different energies?

Delay found, no-delay probability $P=2.6\%$.

$$
\tau = (0.030 \pm 0.012) \text{s/GeV} \\
\tau_q = (3.71 \pm 2.57) \times 10^{-6} \text{s/GeV}^2
$$

Establish lower limits:

$$
M_{QG1} > 0.26 \times 10^{18} \text{GeV} \quad \text{linear dispersion} \\
M_{QG2} > 0.27 \times 10^{11} \text{GeV} \quad \text{quadr. dispersion}
$$

MAGIC Collab. 2008
A Large Flare from PKS 2155-304

Methods: Oversampled light-curves, wavelets
No significant time lag found $\Delta t = 20s$; RMS=28s.
Assume source effect can be neglected: $\Delta t < 72s$.

$\Delta E = \langle E_{>800\text{GeV}} \rangle - \langle E_{200-800\text{GeV}} \rangle \approx 1.02 \text{TeV}$

$M_{QG1} > 0.62 \times 10^{18}\text{GeV}$
Perspectives for future Cerenkov Telescope Array (CTA)

A real observatory with ≈ 100 telescopes.

- Low-energy section
 - energy threshold of 20-30 GeV
 - ~ 23 m telescopes

- Medium Energies:
 - mCrab sensitivity
 - 0.1-10 TeV
 - ~ 12 m telescopes
 - (+9 m SC option)

- High-energy section
 - 10 km2 area for up to energies ≈ 300 TeV
 - $\sim 4-7$ m telescopes

(South Only)
CTA Members: 27 Countries

>1000 scientists and engineers from
>170 institutions

Members (27 countries)
interested to join

Argentina, Armenia, Austria, Brazil, Bulgaria, Czech Republic, Croatia, Finland, France, Germany, Greece, India, Italy, Ireland, Japan, Mexico, Namibia, Netherlands, Norway, Poland, Slovenia, Spain, South Africa, Sweden, Switzerland, UK, USA
One observatory with two sites - operated by one consortium

Selection of sites by end 2013
10 km² (S) flat area 1.5-4.0 km altitude, minimum cloud cover, easiest access, ...

IIA, 2013

VHE Gamma Ray Astronomy

Pratik Majumda
Indian Consortium in CTA (SINP, TIFR, IIA, BARC)

- Site Survey at Hanle (IIA/TIFR) : Proposal submitted to CTA Consortium
- Simulations for optimizing array configurations (SINP, BARC, TIFR) : Test production done at SINP
- Calibration for the camera of the prototype LST (SINP) : Technical responsibility under Pratik Majumdar
- Other tasks being identified and worked upon

- Next major task is to identify areas of contribution, make a proper budget and submit the 4-institute proposal.
Major Goals to be accomplished

Simultaneous observation of intrinsic and absorbed parts of the spectrum

$15 - 20\%$ EBL resolution is possible: What about EBL evolution?

- Star and galaxy evolution is largely unknown
- Fermi (CTA) can measure blazar spectra up to redshift $z \sim 1$ ($z \sim 2$)
- Such sources are behind the main star formation epoch → beacons
- Using the sources with $z<1$, the EBL evolution can be resolved!
- Need >100 sources
- Need to know intrinsic evolution of the sources (BH masses, internal radiation fields, see A. Reimer 07)

Madau, 1998
Cosmology with AGNs in GeV TeV gamma rays

Based on Blanch & Martinez, 2001

- If one knows
 - Intrinsic AGN spectrum and
 - EBL density
- determine distance to the sources using the EBL signature in the measured spectra
- Can cover range from $z=0.004$ to $z>2$
Cosmology with GeV-TeV gamma rays

\[
\frac{dl}{dz} = c \cdot \frac{1/(1+z)}{H_0[\Omega_M(1+z)^3 + \Omega_K(1+z)^2 + \Omega_\Lambda]^{1/2}}
\]

The study of absorption spectra of AGN at different redshifts will open up the study of cosmological parameters

Independent and behaves differently than Luminosity-distance relation in SN 1A

Relies on existence of EBL which is assumed to be uniform and isotropic on cosmological scales.

AGNs as sources: high z

Blanch and Martinez 2004
Conclusions

EBL carries essential cosmological information: Blazars validated as probes of gamma ray horizon

GeV – TeV gamma rays can put strong constraints on density of EBL
With common sources between Fermi and TeV instruments we hope to disentangle internal absorption from EBL
UV/optical component of EBL at z ~ 1 by Fermi-LAT

Current understanding: EBL lower than what was thought before.

Upcoming Cerenkov Telescope Array (CTA) will give more insights to it
Specially measure mid to Far IR EBL to better accuracies

Indirect independent distance measurements: Hubble parameter, hope to do serious cosmology, Indirect detection of DM is quite feasible.

CTA will also probe fundamental physics questions: tests on LIV.
Backup Slides
Immediate Steps in future

VERITAS Upgrade

<table>
<thead>
<tr>
<th>Year</th>
<th>Item</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>Relocation of Telescope 1</td>
<td>Complete</td>
</tr>
<tr>
<td>2010</td>
<td>Network Upgrade</td>
<td>Complete</td>
</tr>
<tr>
<td>2011</td>
<td>Trigger Upgrade: faster, more flexible telescope trigger.</td>
<td>Complete</td>
</tr>
<tr>
<td>2012</td>
<td>Camera Upgrade: replacement of all 2,000 PMTs with high-QE devices.</td>
<td>Complete: Summer 2012</td>
</tr>
</tbody>
</table>

MAGIC:
- Two 17 m telescopes
- Upgrade of older MAGIC I camera in progress
 - Unification of subsystems and readout
 - Improved reliability and sensitivity
 - 576 → 1039 pixels
 - enlarged trigger area
 - analog sum trigger for both

MACE @ HANLE

- Hanle: 4200 m asl, 32.7N

Pratik Majumdar
Giant 28 mt telescope: H.E.S.S. II

- ~600 m² mirror area
- 0.07° pixels
- ~20 GeV peak trigger rate in stand-alone mode
- Trigger modes: stand-alone & coincidence 2/5
How to do even better with Ch. telescopes?

A future Cherenkov observatory needs:

for $E > \text{TeV}$:
- bigger collection area
 (i.e. large array of telescopes, wider FOV)

for $E < \text{TeV}$:
- better background rejection
 (i.e. large array of telescopes, wider FOV
 for multiple shower images)

Wish list ~ at least 10 times better Sensitivity, ~ 5 angular resolution may be possible
Cosmology with TeV gamma rays.
Pair Conversion Telescopes

- EGRET (on Compton gamma ray observatory)

Three main parts:

A **tracker** to determine the trajectory of the e^\pm

A **calorimeter** for measuring the energy

An "**active shield**" against charged cosmic rays (particle detector set in anti-coincidence)
• Skymap for first 2 years

• Launched successfully in 2008 June, delivering a wealth of data on gamma ray sources, > 1500 point sources
Fermi Acceleration

Stochastic Mechanism
Charged particles collide with clouds in ISM and are reflected from irregularities in galactic magnetic field

2nd order

Charged particles can be accelerated to high energies in astrophysical shock fronts

1st order acceleration